Ecological trap
Ecological traps are scenarios in which rapid environmental change leads organisms to prefer to settle in poor-quality habitats. The concept stems from the idea that organisms that are actively selecting habitat must rely on environmental cues to help them identify high quality habitat. If either the habitat quality or the cue changes so that one does not reliably indicate the other, organisms may be lured into poor quality habitat. More specifically, traps are thought to occur when the attractiveness of a habitat increases disproportionately relative to its value for survival and reproduction. The result is preference of falsely attractive habitat and a general avoidance of high-quality but less-attractive habitats. While the demographic consequences of this type of maladaptive habitat selection behavior have been explored in the context of the sources and sinks, ecological traps are an inherently behavioral phenomena of individuals[1]. The ecological trap concept was introduced in 1972 by Dwernychuk and Boag[2] and the many studies that followed suggested that this trap phenomenon may be widespread due to anthropogenic habitat change[1][3][4].
As a corollary, novel environments may represent fitness opportunities that are unrecognized by native species if high-quality habitats lack the appropriate cues to encourage settlement; these are known as perceptual traps.[5] Theoretical[6] and empirical studies[2][7] have shown that errors made in judging habitat quality can lead to population declines or extinction. Such mismatches are not limited to habitat selection, but may occur in any behavioral context (e.g. predator avoidance, mate selection, navigation, foraging site selection, etc.). As such ecological traps are a subset of the broader phenomena of evolutionary traps[3].
As ecological trap theory developed, researchers have recognized that traps may operate on a variety of spatial and temporal scales which might also hinder their detection. For example, because a bird must select habitat on several scales (a habitat patch, an individual territory within that patch, as well as a nest site within the territory), traps may operate on any one of these scales[8]. Similarly, traps may operate on a temporal scale so that an altered environment may appear to cause a trap in one stage of an organism’s life, yet have positive effects on later life stages[3]. As a result, there has been a great deal of uncertainty as to how common traps may be, despite widespread acceptance as a theoretical possibility[1]. However, given the accelerated rate of ecological change driven by human land-use change, global warming, exotic species invasions, and changes in ecological communities resulting from species loss ecological traps may be an increasing and highly underappreciated threat to biodiversity.
A recent addition to the literature on ecological traps provides guidelines for demonstrating the existence of an ecological trap[1]. A study must show a preference for one habitat over another (or equal preference) and that individuals selecting the preferred habitat (or equally preferred habitat) have lower fitness (i.e., experience lower survival or reproductive success). To date, there appear to be few well-documented examples of ecological trap, but this paucity may, in part arise from the practical difficulty of demonstrating habitat preference in wild organisms. One study that was successful was able to show that Indigo Buntings preferred nesting in “winged” patches (with two narrow corridors projecting from opposite ends of the patch) over rectangular patches, despite a higher rate of nest predation[7]. The authors found a higher percentage of older, presumably dominant male Indigo Buntings in the winged patches. The preference for the patches with more edge, combined with its much lower nest success rate, indicated that these patches were indeed ecological traps.
Because ecological and evolutionary traps are still very poorly understood phenomena, many questions about their proximate and ultimate causes as well as their ecological consequences remain unanswered. Are traps simply an inevitable consequence of the inability of evolution to anticipate novelty or react quickly to rapid environmental change? How common are traps? Do ecological traps necessarily lead to population declines or extinctions or is it possible that they may persist indefinitely? Under what ecological and evolutionary conditions should this occur? Are organisms with certain characteristics predisposed to being "trapped"? Is rapid environmental change necessary to trigger traps? Can global warming, pollution or exotic invasive species create traps? Embracing genetic and phylogenetic approaches may provide more robust answers to the above questions as well as providing deeper insight into the proximate and ultimate basis for maladaptation in general. Because ecological and evolutionary traps may lead to population declines, traps are an important research priority for conservation scientists. Given the rapid current rate of global environmental change, traps may be far more common that is realized and it will be important to examine the proximate and ultimate causes of traps if management is to prevent or eliminate traps in the future.
Polarized light pollution
Polarized light pollution is perhaps the most compelling and well-documented cue triggering ecological traps. Orientation to polarized sources of light is the most important mechanism that guides at least 300 species of dragonflies, mayflies, caddisflies, tabanid flies, diving beetles, water bugs and other aquatic insects in their search for the water bodies they require for suitable feeding/breeding habitat and oviposition sites. Because of their strong linear polarization signature, artificial polarizing surfaces (e.g., asphalt, gravestones, cars, plastic sheeting, oil pools, windows) are commonly mistaken for bodies of water. Light reflected by these surfaces is often more highly polarized than that of light reflected by water, artificial polarizers can be even more attractive to polarotactic aquatic insects than a water body and appear as exaggerated water surfaces acting as supernormal optical stimuli. Consequently, dragonflies, mayflies, caddisflies and other water-seeking specieis actually prefer to mate, settle, swarm and oviposit upon these surfaces than available water bodies.
See also
Notes
- ^ a b c d Robertson, B.A.; Hutto, R.L. (2006). "A framework for understanding ecological traps and an evaluation of existing evidence". Ecology 87 (5): 1075–1085. doi:10.1890/0012-9658(2006)87[1075:AFFUET]2.0.CO;2. ISSN 0012-9658. PMID 16761584.
- ^ a b Dwernychuk, L.W.; Boag, D.A. (1972). "Ducks nesting in association with gulls-an ecological trap?". Canadian Journal of Zoology 50 (5): 559–563. doi:10.1139/z72-076.
- ^ a b c Schlaepfer, M.A.; Runge, M.C. and Sherman, P.W. (2002). "Ecological and evolutionary traps". Trends in Ecology and Evolution 17 (10): 474–480. doi:10.1016/S0169-5347(02)02580-6.
- ^ Battin, J. (2004). "When good animals love bad habitats: Ecological traps and the conservation of animal populations". Conservation Biology 18 (6): 1482–1491. doi:10.1111/j.1523-1739.2004.00417.x.
- ^ Patten, M.A.; Kelly, J.F. (2010). "Habitat selection and the perceptual trap". Ecological Applications 20 (8): 2148–56. doi:10.1890/09-2370.1. PMID 21265448.
- ^ Delibes, M.; Gaona, P. and Ferreras, P. (2001). "Effects of an attractive sink leading into maladaptive habitat selection". American Naturalist 158 (3): 277–285. doi:10.1086/321319. PMID 18707324.
- ^ a b Weldon, A.J.; Haddad, N.M. (2005). "The effects of patch shape on Indigo Buntings: Evidence for an ecological trap". Ecology 86 (6): 1422–1431. doi:10.1890/04-0913.
- ^ Misenhelter, M.D.; Rotenberry, J.T. (2000). "Choices and consequences of habitat occupancy and nest site selection in sage sparrows". Ecology 81 (10): 2892–2901. doi:10.1890/0012-9658(2000)081[2892:CACOHO]2.0.CO;2. ISSN 0012-9658.
References
- Crespi, B.J. (2001). "The evolution of maladaptation". Heredity 84 (6): 623–9. doi:10.1046/j.1365-2540.2000.00746.x. PMID 10886377.
- Gilroy, J.J.; Sutherland, W.J. (2007). "Beyond ecological traps: perceptual errors and undervalued resources". Trends in Ecology and Evolution 22 (7): 351–356. doi:10.1016/j.tree.2007.03.014. PMID 17416438.
- Horváth, Gábor; Kriska, György; Malik, Péter; Robertson, Bruce (2009). "Polarized light pollution: a new kind of ecological photopollution". Frontiers in Ecology and the Environment 7 (6): 317–325. doi:10.1890/080129.
- Horváth, G; Zeil, J. (1996). "Kuwait oil lakes as insect traps". Nature 379 (6563): 303–304. doi:10.1038/379303a0.
- Horváth, G; Bernáth, B; Molnár, G. (1998). "Dragonflies find crude oil visually more attractive than water: Multiple-choice experiments on dragonfly polarotaxis". Naturwissenschaften 85 (6): 292–297. doi:10.1007/s001140050503.
- Horváth, G; Malik, P; Kriska, G; Wildermuth, H. (2007). "Ecological traps for dragonflies in a cemetery: the attraction of Sympetrum species (Odonata: Libellulidae) by horizontally polarizing black gravestones". Freshwater Biol 52 (9): 1700–1709. doi:10.1111/j.1365-2427.2007.01798.x.
- Kriska, G; Horváth, G; Andrikovics, S. (1998). "Why do mayflies lay their eggs en masse on dry asphalt roads? Water-imitating polarized light reflected from asphalt attracts Ephemeroptera". J Exp Biol 201 (Pt 15): 2273–86. PMID 9662498.
- Kriska, G; Malik, P; Szivák, I; Horváth, G. (2008). "Glass buildings on river banks as "polarized light traps" for mass-swarming polarotactic caddis flies". Naturwissenschaften 95 (5): 461–467. doi:10.1007/s00114-008-0345-4. PMID 18253711.
- Schwind, R. (1991). "Polarization vision in water insects and insects living on a moist substrate". J Comp Physiol A 169: 531–540.
Further reading
- Caswell, H. 2001. Matrix population models: Construction, analysis, and interpretation. 2nd edition. Sinauer. Sunderland, Mass., USA.
- Dias, P. C. (1996). "Sources and sinks in population biology". Trends in Ecology and Evolution 11 (8): 326–330. doi:10.1016/0169-5347(96)10037-9.
- Diffendorfer, J. E. (1998). "Testing models of source-sink dynamics and balanced dispersal". Oikos 81 (3): 417–433. doi:10.2307/3546763. JSTOR 3546763.
- Fretwell, S. D.; Lucas, H. L.; Jr (1969). "On territorial behavior and other factors influencing habitat distribution in birds". Acta Biotheoretica 19: 16–36. doi:10.1007/BF01601953.
- Grinnell, J. (1917). "The Niche-Relationships of the California Thrasher". The Auk 34: 427–433.
- Holt, R. D. (1985). "Population-Dynamics in 2-Patch Environments — Some Anomalous Consequences of an Optimal Habitat Distribution". Theoretical Population Biology 28 (2): 181–208. doi:10.1016/0040-5809(85)90027-9.
- Howe, R. W.; Davis, G. J.; Mosca, V. (1991). "The Demographic Significance of Sink Populations". Biological Conservation 57 (3): 239–255. doi:10.1016/0006-3207(91)90071-G.
- Hutchinson, G. E. (1957). "Concluding Remarks". Cold Spring Harb Symp Quant Biol 22: 415–427. doi:10.1101/SQB.1957.022.01.039.
- Johnson, D. M. (2004). "Source-sink dynamics in a temporally, heterogeneous environment". Ecology 85 (7): 2037–2045. doi:10.1890/03-0508.
- Keddy, P. A. (1982). "Population Ecology on an Environmental Gradient — Cakile-Edentula on a Sand Dune". Oecologia 52 (3): 348–355. doi:10.1007/BF00367958.
- Leibold, M. A.; Holyoak, M.; Chase, J. M.; Hoopes, M. F.; Holt, R. D.; Shurin, J. B.; Law, R.; Tilman, D. et al. (2004). "The metacommunity concept: a framework for multi-scale community ecology". Ecology Letters 7 (7): 601–613. doi:10.1111/j.1461-0248.2004.00608.x.
- Pulliam, H. R. (1988). "Sources, sinks, and population regulation". American Naturalist 132 (5): 652–661. doi:10.1086/284880.
- Pulliam, H. R.; Danielson, B. J. (1991). "Sources, Sinks, and Habitat Selection — a Landscape Perspective on Population-Dynamics" (PDF). American Naturalist 137: S50–S66. doi:10.1086/285139. http://www.public.iastate.edu/~jessie/Publications/1991%20Pulliam%20Danielson%20American%20Naturalist.pdf. Retrieved 11 December 2010.
- Purcell, K. L.; Verner, J. (1998). "Density and reproductive success of California Towhees". Conservation Biology 12 (2): 442–450. doi:10.1046/j.1523-1739.1998.96354.x.
- Roberts, C. M. (1998). "Sources, sinks, and the design of marine reserve networks". Fisheries 23 (7): 16–19. http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=4368007&q=&uid=790164755&setcookie=yes.
- Runge, J. P.; Runge, M. C.; Nichols, J. D. (2006). "The role of local populations within a landscape context:defining and classifying sources and sinks". American Naturalist 167 (6): 925–938. doi:10.1086/503531.
- Thomas, C. D.; Singer, M. C.; Boughton, D. A. (1996). "Catastrophic extinction of population sources in a butterfly metapopulation". American Naturalist 148 (6): 957–975. doi:10.1086/285966.
- Tittler, R.; Fahrig, L.; Villard, M. A. (2006). "Evidence of large-scale source-sink dynamics and long-distance dispersal among wood thrush populations". Ecology 87 (12): 3029–3036. doi:10.1890/0012-9658(2006)87[3029:EOLSDA]2.0.CO;2. ISSN 0012-9658.
- Watkinson, A. R.; Sutherland, W. J. (1995). "Sources, sinks and pseudo-sinks". Journal of Animal Ecology 64 (1): 126–130. doi:10.2307/5833. JSTOR 5833.
- Williams, B. K., J. D. Nichols, and M. J. Conroy. 2001. Analysis and management of animal populations. Academic Press. San Diego, USA.